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In this article we introduce a new two-phase model for compressible viscous flows of
saturated mixtures consisting of a carrier fluid and a granular material. The mixture is
treated as a multicomponent fluid, with a set of thermodynamic variables assigned to
each of its constituents. The volume fraction occupied by the granular phase and its
spatial gradient are introduced as additional degrees of freedom. Then, by applying
the classical theory of irreversible processes we derive algebraic expressions for the
viscous stresses and heat flux vectors, the momentum and energy exchanges between
the two phases, as well as a parabolic partial differential equation for the volume
fraction. In our model, thermal non-equilibrium between the two phases emerges as a
source term of the evolution equation for the volume fraction, in contrast with earlier
models.

1. Introduction
A two-phase model for compressible flows of gas-permeable viscous granular

materials is derived in this article. Such flows are encountered in numerous industrial
and technological applications, for example, power plants, chemical plants, solid
rocket motors, deflagration-to-detonation transitions of granular explosives. Due to
their wide applicability, modelling of these flows has attracted much attention over
the years. Typically, models of such flows employ either an averaging approach
or a mixture-theory approach. The averaging approach is based on modifying the
equations of motion for a single component to account for the other components,
and then averaging these equations over time or volume, see Drew & Passman (1999),
and references therein.

On the other hand, mixture theories consider the mixture as a multicomponent
fluid: the mixture is assumed to consist of two separate, identifiable and co-existing
continua that are in thermodynamic non-equilibrium with each other. A set of
balance equations is assigned to each phase separately, along with an entropy balance
for the mixture. The challenging part is to supplement the balance equations with
constitutive relations for the viscous stresses as well as suitable expressions for the
phase interactions (i.e. the mass, momentum, and energy exchanges between the two
phases). These expressions appear in the balance equations as source terms that drive
the mixture to equilibrium. A standard approach, followed herein, for the derivation of
such expressions is to make use of the constraints imposed by the entropy inequality.

The bibliography of mixture theories of granular materials is very extensive. More
than 30 years ago Goodman & Cowin (1972) presented a model for dry granular
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materials based on the thermodynamic theory of Coleman–Noll. Subsequently their
model has been extended or modified by various authors; see, for example, Svendsen
& Hutter (1995), Wang & Hutter (1999), as well as references therein for earlier
models. Recently, variational approaches for two-phase modelling have also been
employed; see, for example, Sciarra, Hutter & Maugin (2003). In all the above cited
works, viscosity effects are taken into account and constitutive relations for the viscous
stresses are derived.

Correctly or not, viscous stresses are typically ignored in proposed models for high-
speed compressible flows of two-phase mixtures; see, for example, Baer & Nunziato
(1986), Bdzil et al. (1999), Powers, Stewart & Krier (1990), Saurel & LeMetayer (2001).
The well-known BN model of Baer & Nunziato (1986) is based on the formalism
introduced by Passman et al. (1984) which, in turn, is based on the Coleman–Noll
theory. An extension to the original BN model has been proposed by Bdzil et al. (1999)
who identified and addressed some of its inconsistencies. More recently, Gavrilyuk &
Saurel (2002), and Saurel, Gavrilyuk & Renaud (2003) derived compressible two-phase
flow models that take into account microinertia by using a variational approach.

Here, we focus on compressible flows of granular mixtures and derive closure
terms for the balance equations of each phase by applying the theory of irreversible
processes (de Groot & Mazur 1984; Beris & Edwards 1994). This theory is well
known and represents a standard approach for non-equilibrium processes. It has been
previously applied to classical heterogeneous mixtures (Blokhin & Dorovsky 1995),
but not to the granular mixtures of interest. Yet, as will be shown herein, this theory
provides a straightforward way to properly take into account all the thermodynamic
forces that appear in the balance equations of the mixture. Since it is well-known that
granular materials can support shear in equilibrium, we take into account viscosity
effects and provide suitable expressions for the shear viscous tensors as well as the
bulk viscous pressures. However, in § 3 we consider the inviscid limit of our model in
order to draw comparisons between the phase interaction terms presented herein and
those appearing in the models mentioned in the previous paragraph.

2. Derivation of the two-phase flow model
In this article we consider the flow of a mixture of an (isotropic) gas and an isotropic

granular material in the absence of chemical reactions or phase transformations, i.e.
there is no mass exchange between the two phases. The assumptions upon which our
model is based are the following: (i) the mixture consists of two separate, coexisting
continua, (ii) each phase of the mixture is in a local (equilibrium) state, (iii) the
principle of phase separation holds (Passman, Nunziato & Walsh 1984), (iv) the mo-
mentum and energy exchanges between the two phases are assumed to be pure
exchanges, i.e. their sum must vanish, (v) microinertia effects of the granular phase,
such as grain vibration or rotation, are ignored.

Each phase is assigned a density ρα , temperature Tα , specific energy eα , velocity
vector uα , and a volume fraction φα , where α = g, s, and g and s denote the gaseous
phase and solid phase, respectively. Also, let pα , ηα , and ψα = eα − Tαηα , denote
the thermodynamic pressure, specific entropy, and specific Helmholtz free energy for
each phase, respectively. The volume fractions represent the percentage of volume
occupied by each constituent and satisfy the saturation condition

φg + φs = 1. (1)
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The properties of the mixture are weighted sums of the properties of its constituents.
Therefore, the density, velocity, and specific entropy of the mixture are written as

ρ = ρgφg + ρsφs, u = ρ−1(ρgφgug + ρsφsus), η = ρ−1(ρgφgηg + ρsφsηs), (2)

respectively.
For a complete description of the state of the mixture we are required to

introduce an additional variable, namely, the volume fraction φs. In fact, φs represents
an additional degree of freedom and, therefore, must be considered as a new
thermodynamic variable. On the other hand, it is well known that granular material
can support shear in equilibrium. Since these forces depend on the intergranular
surface area and the interfacial surface, the introduction of φs alone is not sufficient to
yield expressions for the shear stresses on each phase at equilibrium. This necessitates
the introduction of an additional variable related to the microstructure of the system.
Inspired by Goodman & Cowin (1972), we therefore introduce the volume fraction
gradient ∇φs, which is a measure of the interfacial area density, as an independent
state variable.

Having augmented the state-variable vector, we then introduce the generalized
Gibbs equations for each phase:

Tαdηα = deα − pα

ρ2
α

dρα − βα

ραφα

dφα − 1

ραφα

hα · d∇φα, α = g, s, (3)

where

βα = ραφα

∂ψα

∂φα

, hα = ραφα

∂ψα

∂∇φα

, α = g, s. (4a, b)

It is straightforward to verify that the above definitions of βα and hα satisfy the
convexity requirements for intrinsic stability of thermodynamic equilibria. Further, βα

and hα do not necessarily vanish at equilibrium. Due to the presumed isotropy of the
materials involved, the Helmholtz free energies of each phase are isotropic functions,
i.e. ψα(. . . , ∇φα) = ψα(. . . , ∇φα · ∇φα). In turn, this implies that relation (4b) can be
written as

hα = γα∇φα, γα ≡ 2ραφα

∂ψα

∂(∇φα · ∇φα)
, α = g, s. (5)

The quantities βα, hα , α = g, s, are termed herein the affinities of φα and ∇φα ,
respectively. Goodman & Cowin (1972) and Baer & Nunziato (1986) characterize βα

as the configuration pressure of each phase. These pressures are due to the volume
distribution of the granular phase. More specifically, βs represents the elastic, contact
forces that are developed between grains under compaction. The work performed by
βs is the compaction energy of the granular phase. Since such forces are not expected
to be developed in the gaseous phase, many authors set βg = 0 (Bdzil et al. 1999).

Further, the stress vectors hα represent forces related to rearrangements in the
distribution of interfacial area density. In other words, γα are coefficients related
to dispersion effects. In the analysis of Goodman & Cowin (1972), hα plays the
role of the equilibrated stress vector, according to the formalism of Coleman–Noll.
The thermodynamic pressures pα , α = g, s, are derived by appropriate equations of
state. In accordance with the Gibbs equations above, the equation of state for each
constituents should generally depend on the volume fraction and on its gradient,
i.e. eα = eα(pα, Tα, φα, ∇φα). Similarly, both βα and γα are functions of all four
independent state variables.
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According to the standard description of multicomponent fluids (Drew & Passman
1999), the mass, momentum, and energy equations of each phase are written as

∂ραφα

∂t
+ ∇ · (ραφαuα) = 0, (6)

∂ραφαuα

∂t
+ ∇ · (ραφαuαuα) + ∇(pαφα) = −∇ · (φαPα) + f α, (7)

∂ραφαeT,α

∂t
+ ∇ · (φαuα(ραeT,α + pα)) = −∇ · (φαPα · uα) − ∇ · qα + Eα, (8)

respectively. We have considered the multidimensional form of the balance equations
and not their one-dimensional version, as in Baer & Nunziato (1986) and Bdzil
et al. (1999), because the tensorial ranks of the various thermodynamic forces play
an important role in the derivation of the flow model.

In (8), eT,α is the sum of the specific internal and kinetic energies of each phase,

eT,α = eα + 1
2
uα · uα, (9)

while the vectorial quantities qα , α = g, s, are the conductive heat fluxes inside each
phase. The tensorial quantities Pα, α = g, s, are the viscous pressure tensors for each
phase. By virtue of the isotropy of each constituent and the conservation of angular
momentum, these tensors are symmetric, i.e. PT

α = Pα . Then, as usual, each of these
tensors is decomposed according to

Pα = pv
αI + Pv

α, pv
α = 1

3
tr (Pα), α = g, s, (10)

where pv
α are the bulk viscous pressures and Pv

α are traceless deviatoric tensors. The
terms f α in (7) represent the momentum exchanges (forces) between the two phases.
As postulated above, the sum of the momentum exchange terms must vanish:∑

α

f α = f g + f s = 0 =⇒ f s = − f g ≡ f . (11)

The terms Eα in (8) represent the energy exchanges between the two phases. Each
of these terms can be written as the sum of the contribution of the force f plus a
remaining part (Drew & Passman 1999),

Eα = Eα + f α · uα, α = g, s. (12)

Further, as postulated above, the sum of these terms must vanish. Thus, from (11)
and (12) we arrive at

Es = E + f · us = −Eg, E ≡ Es. (13)

Using equations (6)–(11) and (13), we can write the balance equations for each phase
as

dρgφg

dtg
+ ρgφg∇ · ug = 0, (14a)

ρgφg

dug

dtg
+ ∇(pgφg) = −∇

(
pv

gφg

)
− ∇ ·

(
φgP

v
g

)
− f , (14b)

ρgφg

deg

dtg
+ pgφg∇ · ug = −pv

gφg∇ · ug − φgP
v
g:V

v
g

−∇ · qg + f · (ug − us) − E; (14c)
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dρsφs

dts
+ ρsφs∇ · us = 0, (15a)

ρsφs

dus

dts
+ ∇(psφs) = −∇

(
pv

s φs

)
− ∇ ·

(
φsP

v
s

)
+ f , (15b)

ρsφs

des

dts
+ psφs∇ · us = −pv

s φs∇ · us − φsP
v
s : V

v
s − ∇ · qs + E, (15c)

where the material derivatives are defined as (d/dtα)( ) = (∂/∂t + uα ·)( ), α = g, s.
Also Vv

α are the deviatoric, traceless parts of the rate of deformation tensors Vα ,
respectively. In other words, Vα = 1

2
(∇uα +(∇uα)

T), and Vv
α = Vα − 1

3
(∇ · uα)I, α = g, s,

with I being the identity matrix.
Summing the above equations over the constituents yields the usual balance

equations for a single phase. The overall entropy of the mixture η satisfies an equation
of the form (de Groot & Mazur 1984)

ρ
dη

dt
+ ∇ · Jη = σ � 0. (16)

where Jη is the entropy flux and σ is the (non-negative) specific entropy production
rate. On the other hand, by employing relations (2), (14a), and (15a) we obtain the
following expression for the time derivative of the entropy of the mixture:

ρ
dη

dt
= ∇ · (ρgφgηg(u − ug) + ρsφsηs(u − us)) + ρgφg

dηg

dtg
+ ρsφs

dηs

dts
. (17)

This equation can be expanded further by introducing the Gibbs equations (3) and
the balance equations (14a, c), (15a, c), for each phase respectively. By doing so and
by employing the identities

dφg

dtg
= −dφs

dts
− (ug − us) · ∇φs, (18)

1

Tα

hα · d∇φα

dtα
=

γα

Tα

∇φα ·
(

∇dφα

dtα
− ∇φα · ∇uα

)

= ∇ ·
(

γα

Tα

dφα

dtα
∇φα

)
− dφα

dtα
∇ ·

(
γα

Tα

∇φα

)
− γα

Tα

(∇φα∇φα) : ∇uα, α = g, s, (19)

we arrive at the balance equation for the mixture entropy. This equation has the form
of (16) with the entropy flux given by

Jη =
∑
α=g,s

qα

Tα

+
γα

Tα

dφα

dtα
∇φα + ραφαηα(uα − u), (20)

and the entropy production rate given by

σ = E

(
1

Ts

− 1

Tg

)
+

dφs

dts

[
ps − βs

Ts

− pg − βg

Tg

+ ∇ ·
((

γs

Ts

+
γg

Tg

)
∇φs

)]

−
(

pv
gφg − γg

3
|∇φs|2

)
1

Tg

∇ · ug −
(

pv
s φs − γs

3
|∇φs|2

)
1

Ts

∇ · us

+

[
f −

(
pg − Tg∇ ·

(
γg

Tg

∇φs

))
∇φs

]
· 1

Tg

(ug − us) + qg · ∇
(
T −1

g

)
+ qs · ∇

(
T −1

s

)

−
(
φgP

v
g − γsΦ

v
s

)
:

1

Ts

Vv
g −

(
φsP

v
s − γsΦ

v
s

)
:

1

Ts

Vv
s , (21)
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where the dual product ∇φs∇φs has been decomposed into a diagonal part plus a
traceless deviatoric tensor,

∇φs∇φs = 1
3
|∇φs|2I + Φv

s . (22)

We see that the entropy production rate is the sum of products between nine
independent generalized thermodynamic fluxes Ji , and nine independent generalized
thermodynamic forces Xi . In other words,

σ =

9∑
i=1

JiXi � 0, (23)

with

Ji ∈
{

E,
dφs

dts
,

(
pv

s φs − γs

3
|∇φs|2

)
,

(
pv

gφg − γg

3
|∇φs|2

)
,

(
f −

(
pg − Tg∇ ·

(
γg

Tg

∇φs

))
∇φs

)
, qg, qs,

(
φgP

v
g − γgΦ

v
s

)
,
(
φsP

v
s − γsΦ

v
s

)}
, (24)

and

Xi ∈
{

1

Ts

− 1

Tg

,

(
ps − βs

Ts

− pg − βg

Tg

+ ∇ ·
(

γs

Ts

+
γg

Tg

)
∇φs

)
, −∇ · ug,

−∇ · ug,
1

Tg

(ug − us), ∇T −1
g , ∇T −1

s , − 1

Tg

Vv
g, − 1

Ts

Vv
s

}
. (25)

According to the theory of irreversible processes, linear constitutive relations exist
between the fluxes and the forces. These relations can be obtained by Taylor expanding
around the equilibrium values Ji,eq = 0 and Xi,eq = 0 and omitting second and higher
order terms:

Ji =

9∑
j=1

LijXi, i = 1, . . . 9, (26)

where the quantities Lij are the phenomenological coefficients of the flow model and
depend on material properties of the mixture.

The phenomenological coefficients are subject to four constraints. The first arises
from the tensorial rank of the fluxes and forces. According to the representation
theorem of isotropic tensors, linear or quasi-linear relations for fluxes and forces of
different tensorial rank do not couple. (This statement is often referred to as the
Curie principle).

The second constraint is imposed by the principle of phase separation. Expansion
(26) permits couplings between the fluxes ∇qα , pv

α , and Pv
α , and thermodynamic forces

Xi related to both phases. This is a consequence of the assumption that the two
phases coexist, i.e. they occupy the same space. This assumption, however, is valid
only on the macroscopic level and not on the mesoscopic (that is, at length scales
equal to the grain diameters) or microscopic levels. For example, we expect that the
conductive heat transfer inside each grain is independent of the gradient of the gas
temperature. Therefore, the conductive heat fluxes and viscous fluxes can be coupled
only to thermodynamic forces associated with the same phase. This is a restatement
of the principle of phase separation.

The third constraint arises from the Onsager–Casimir reciprocal relations between
the phenomenological coefficients, i.e.

Lij = εiεjLji, (27)
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where εi , εj are equal to +1 or to −1 depending on whether the corresponding flux
is even or odd under time reversal. Taking into account the above three constraints
we finally arrive at the following constitutive relations:

E = L11

(
1

Ts

− 1

Tg

)
+ L12

(
ps − βs

Ts

− pg − βg

Tg

+ ∇ ·
((

γs

Ts

+
γg

Tg

)
∇φs

))
, (28a)

dφs

dts
= L12

(
1

Ts

− 1

Tg

)
+ L22

(
ps − βs

Ts

− pg − βg

Tg

+ ∇ ·
((

γs

Ts

+
γg

Tg

)
∇φs

))
, (28b)

pv
g =

γg

3φg

|∇φs|2 − L33

1

φgTg

∇ · ug, (28c)

pv
s =

γs

3φs

|∇φs|2 − L44

1

φsTs

∇ · us, (28d)

qg = L55∇
(
T −1

g

)
, (28e)

qs = L66∇
(
T −1

s

)
, (28f )

f =

(
pg − Tg∇ ·

(
γg

Tg

∇φs

))
∇φs + L77

1

Tg

(ug − us), (28g)

Pv
g =

γg

φg

Φv
s − L88

1

φgTg

Vv
g, (28h)

Pv
s =

γs

φs

Φv
s − L99

1

φsTs

Vv
s . (28i)

All of the above coefficients are scalar quantities. L33, L44, L55, L66, L88, L99 are
related to the usual transport coefficients of thermal conductivity λα , bulk viscosity
ζα , and shear viscosity µα by

L33 = λgT
2
g , L44 = λsT

2
s , (29)

L55 = ζgφgTg, L66 = ζsφsTs, L88 = 2µgφgTg, L99 = 2µsφsTs. (30)

From (28b) we verify that the volume fraction obeys a parabolic partial differential
equation which reduces to an advection equation in the limit γα → 0, α = g, s. Further,
from (28e, f ) we observe that each constituent obeys Fourier’s law of heat conduction.
On the other hand, the bulk viscous forces and the shear stresses of each constituent
are sums of a term that is linear to the deformation rates (i.e. a ‘Newtonian’ part)
plus another term that involves the derivatives of the volume fraction. The existence
of the latter demonstrates the ability of the mixture to support shear at equilibrium.
Note also that the equilibrium values of the viscous stress tensors are the same as
predicted by Goodman & Cowin (1972).

The fourth constraint on the phenomenological coefficients is imposed by the
positivity of the entropy production rate. It is straightforward to verify that necessary
and sufficient conditions for positive entropy production rate are

Lii � 0, i = 1, . . . 9, L2
12 � L11L22. (31)

This implies that λα , ζα , and µα are non-negative quantities. Equations (14), (15),
and (28), supplemented with appropriate equations of state for the two constituents
and functional relations for βα and γα , constitute a complete (closed) flow model
for the mixtures of interest. In flows where heat conduction, viscous presures, and
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shear stresses have negligible effects (for examle, flows with strong shocks) the model
reduces to a non-conservative system of hyperbolic partial differential equations, i.e.
it is evolutionary.

Assuming that the thermal conductivities (29) and viscosity coefficients (30) are
known, the model introduces four additional coefficients, namely L11, L12, L22, and
L77. These coefficients are related to the usual transport coefficients via

h1 =
L11

TgTs

, h2 =
TgTsφgφs

L12

, µc =
φgφs

L22

, δ =
L77

Tg

. (32)

In (32), h1 is the interfacial heat transfer coefficient, δ is the interfacial drag coefficient,
µc is the dynamic compaction coefficient, and h2 is an additional compaction
coefficient termed herein the thermal compaction coefficient. Empirical correlations for
the heat transfer coefficient h1 and the drag coefficient δ can readily be found in the
literature; see for example Baer & Nunziato (1986), and Saurel & LeMetayer (2001).
These correlations are traditionally based on the Nusselt and Reynolds numbers (for
h1 and δ respectively). On the other hand, we have no real basis on which to determine
the coefficients µc and h2 because the proposed equation for the volume fraction is
new and has not yet been studied. Therefore, these two transport coefficients have to
be measured experimentally.

3. The inviscid limit: comparison with earlier models
As regards comparisons with earlier models for high-speed flows (namely Baer &

Nunziato 1986 and Bdzil et al. 1999), we first note that our analysis takes into account
viscous effects. Such effects might be important in phenomena such as deflagration-
to-detonation transition in granular explosives. Nonetheless, in order to compare the
source terms in earlier models and the ones proposed herein, we now consider the
‘inviscid’ limit of our model by setting the shear stress tensors and the bulk viscous
pressures equal to zero. In other words, we assume throughout this section that

ζα = 0, µα = 0, γα = 0, α = g, s. (33)

In this limit, expression (28g) for the momentum exchange between the two phases
becomes the same as the one appearing in the BN model. The most important
differences are that our model predicts a coupling between (i) the energy exchange
between the two phases and the pressure non-equilibrium, cf: (28a), and (ii) the volume
fraction evolution and thermal non-equilibrium between the two phases, cf. (28b). By
contrast, in earlier models the evolution of the volume fraction φs was considered to
be a function of (pg − ps) only, while the energy exchange between the two phases
was considered to be a function of (Tg −Ts) only. Therefore, in earlier models, thermal
non-equilibrium between the two phases influences the volume fraction evolution only
in an indirect way, via the pressure–temperature dependence in the equations of state.

One might argue that these differences stem from the fact that in our analysis the
term (ps − βs)/Ts − (pg − βg)/Tg appears as an independent thermodynamic force. In
the earlier models this term was decomposed in such a way that the pressure difference
(ps − βs) − (pg − βg) emerged as an independent thermodynamic force.However, we
note that the choice of forces and fluxes is not in any way unique. Even if we had
selected the same thermodynamic forces as in earlier works, the direct couplings
predicted by our model would still be present due to the linear relations between
thermodynamic fluxes and forces predicted by the theory of irreversible processes.
Therefore, the assumption that these couplings do not exist cannot be justified on
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purely thermodynamic grounds. These direct couplings have not been taken into
account before and constitute the essential differences between the ‘inviscid’ version
of our model and the earlier models.

The prediction of our model that there is a coupling between thermal non-
equilibrium and the evolution of the volume fraction can be supported by the following
physical argument. In compressible flows of granular mixtures, pressure equilibrium
is typically attained much faster than temperature equilibrium; see relevant discussion
in Kapila et al. (2001) and experimental results referenced therein. As an example,
we may consider the propagation of a compression wave in a quiescent granular
mixture. Then, behind the compression wave and a short zone at the end of which
the pressures become almost equal, there is a long temperature relaxation zone where
ps − βs � pg − βg and Tg �= Ts. Inside this zone equation(28b) gives, to a first-order
approximation for ps − βs,

dφs

dts
= (L12 + L22(pg − βg))

(
1

Ts

− 1

Tg

)
. (34)

We see that even if cross-coupling effects are ignored (i.e. L12 = 0), the source term
of (34) does not vanish; the coefficient L22 cannot be zero (otherwise there would be
no compaction at all) while the equilibrium value of the pressure behind the wave is
typically large. Therefore, the source term that appears in (34) cannot be considered
as small. The amplitude of this term increases with the strength of the compression
wave because stronger waves result in higher equilibrium pressures. It is possible
that there are cases where the new couplings introduced by the proposed model
(i.e. between volume fraction evolution and thermal non-equilibrium and between
interfacial energy exchange and pressure non-equilibrium) are not important and
can be neglected. However, as indicated by the above physical argument, there are
flows where these couplings can play an non-negligible role. Ultimately, whether these
couplings are important or not should be determined separately for each case, based
on the physical properties of the mixture and the initial conditions.

Finally, it is worth mentioning that the coupling between thermal non-equilibrium
and volume fraction evolution cannot be ignored a priori even in cases where the
temperature differences are relatively small. To this end, assume that 1/Ts is expanded
in Taylor series around Tg and that Tg − Ts is sufficiently small so that T −1

s − T −1
g �

(Tg − Ts)/T 2
g . Under this approximation, equations (28a,b) become

E =
L11 + L12(ps − βs)

T 2
g

(Tg − Ts) +
L12

Tg

(ps − βs − pg + βg), (35a)

dφs

dts
=

L12 + L22(ps − βs)

T 2
g

(Tg − Ts) +
L22

Tg

(ps − βs − pg + βg). (35b)

We observe that the pressure and temperature differences now act as independent
thermodynamic forces. From equation (35b) we see that dφs/dts and (Tg −Ts) decouple
only if ps − βs = −L12/L22. However, this condition is not always valid for a mixture
of arbitrary constituents at arbitrary concentrations.

4. Concluding remarks
In this article, a two-phase model for compressible flows of granular mixtures has

been derived. Each phase is described as a continuum endowed with its own mass,
momentum, angular momentum, and energy balance equations. The volume fraction
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of the granular phase and its gradient are introduced as additional degrees of freedom.
The model is derived by applying directly the classical theory of irreversible processes
which is based on the local equilibrium hypothesis. The introduction of the gradient of
the volume fraction as an additional degree of freedom leads to constitutive relations
for the shear stresses that do not vanish at equilibrium, in accordance with physical
observations. Further, our model includes a parabolic partial differential equation
for the volume fraction and algebraic expressions for the momentum and energy
exchanges between the two phases. The model proposed herein predicts, in contrast
with earlier ones, that the volume fraction evolution and the energy exchange between
the two phases depend directly on both mechanical and thermal non-equilibrium
between the two phases.

Finally, it should be mentioned that there are cases where the hypothesis of the
local equilibrium state is no longer valid; for example, flows with strong micro-inertial
effects, such as grain vibration or rotation, etc. For such cases it is possible to extend
the proposed model by applying, for example, the theory of extended irreversible
thermodynamics, Jou et al. (2001). According to this theory, the dissipative fluxes are
included in the set of state variables. This results in a set of evolutionary equations
for the dissipative fluxes instead of the algebraic ones, cf. (26), that are predicted by
the classical theory.
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